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ABSTRACT

A combination of stomach content and nitrogen (§'°N) and carbon (§'3C) stable-isotope
analysis was used to assess the trophic interactions and feeding habits of three notothe-
nioid coastal fish (Champsocephalus esox, Patagonotothen tessellata and Patagonotothen
cornucola) and one exotic salmon species (Oncorhynchus tschawytscha) with diverse life
habits (benthic and benthopelagic) in the Francisco Coloane Coastal Marine Protected
Area, southern Chile. The stomach contents of C. esox were mainly fish; those of P.
cornucola and O. tschawytscha were crustacean decapods, Munida gregaria. A cluster
analysis on isotope data and stable-isotope Bayesian ellipses detected two different
predator groups, one with benthopelagic habits (C. esox and O. tshawytscha) and one
with benthic habits (P. cornucola and P. tessellata). These results were supported with
similar isotopic trophic level of each group. We suggest that the exotic salmon O.
tschawytscha is a generalist predator with a broad trophic niche that may compete with
the native notothenioid C. esox, as both have equivalent trophic levels with substantial

KEYWORDS
Notothenioidei; exotic
salmonid; trophic level;
feeding habits; Magellan
region; sub-Antarctic

ABBREVIATIONS

ANOVA: analysis of variance
analysis; CMPA: Coastal
Marine Protected Area; HSD:
Tukey's honest significant
difference test; IRI: index of
relative importance; SEAc:
standard ellipse area
corrected for sample size; TL:

overlap. This preliminary study is the first on trophic relationships of a subtidal fish trophic level

assemblage within a remote ecosystem of fjords and channels in Chile’s southern
Patagonia.

Introduction The notothenioid represented by the genera
Champsocephalus, ~Cottoperca, Eleginops, Paranoto-
thenia and Patagonotothen are the most important
fish in terms of abundance and diversity of species
in shallow subtidal areas (<15 m depth) of the
fjord and channel ecosystems that make up the
Francisco Coloane CMPA in Chile’s southern
Patagonia (Pequefio 2000, 2006; Sielfeld et al.
2006; Reyes & Hiine 2012). This is the first (cre-
ated in 2003) of three CMPAs along the
Patagonian ecosystem of fjords and channels.
Lying entirely in the Strait of Magellan, the
CMPA supports high abundance of phyto-zoo-
plankton (e.g., diatoms, copepods, decapods and
euphausiids), providing resources to many top
predators, such as seabirds and marine mammals
(Haro et al. 2013). This ecosystem is potentially
threatened by anthropogenic activities, such as the
introduction of exotic salmonids during the 1970s
to 1990s with the aim of establishing wild popula-
tions of chinook salmon (O. tschawytscha) in the
western shores of Patagonia (Soto et al. 2007;
Niklitschek et al. 2013). The relatively recent inva-
sion of chinook salmon may constitute a major

In the polar regions of the Southern Hemisphere, the
notothenioids (Perciformes) occupy the intermediate
trophic level in marine food webs (Kock et al. 2012).
As both predators and prey, they play important eco-
logical roles in the marine ecosystem, occupying most
of the available trophic niches (Eastman 1993). As
predators, they feed on benthic, zooplanktonic and
nektonic organisms; as prey, the notothenioids are an
important source of nutrition for top-level consumers,
such as marine birds and mammals (Birt et al. 1987;
Leopold et al. 1998; La Mesa et al. 2004). Despite their
lack of a swim bladder, the notothenioids can prey on
pelagic organisms in the water column because of a
modified buoyancy-control mechanism involving
reduced skeletal ossification and/or lipid deposits
(Eastman 1993; Eastman & Sidell 2002; Fernandez
et al. 2012). Thus, they exhibit diverse life habits -
benthic, benthopelagic, semi-pelagic and pelagic) -
which allow them to utilize food resources in a variety
of habitats (Eastman 1993; Grohsler 1994; Clarke &
Johnston 1996). Such a wide range of feeding habits
may reduce dietary overlap and interspecific competi-
tion (Colwell & Futuyma 1971; Odum 1971).
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threat to near-shore biodiversity along the Beagle
Channel (Fernandez et al. 2010), increasing
resource competition with native fish (e.g.,
Riccialdelli et al. 2017). However, there is scarce
information on the invasive salmonid feeding
behaviour and trophic interactions with the native,
notothenioid coastal fish assemblage.

The purpose of this preliminary study is to determine
the feeding habits and trophic interactions of three
notothenioid coastal fishes and one exotic salmon species
(O. tschawytscha) with benthic and benthopelagic habits
in the Francisco Coloane CMPA through the combined
approach of stomach content and stable-isotope (§"°C
and 8'°N) analyses. This framework permits direct
insight into the native fishes trophic positions and their
trophic relationship with an invasive salmonid, assessing
the threat of resource competition among invasive versus
native fishes in a remote fjord and channel ecosystems of
Chile’s southern Patagonia. Two methods may be used to
examine trophic relationships: stomach content analysis
and stable-isotope ratios. Using both is the ideal approach
to compensate for any inherent inaccuracy in each or
either method. Stomach content analyses provide only a
‘snapshot’ of dietary habits, often encountering empty
stomachs, and may show bias toward prey items with
lower digestion rates (Hyslop 1980). The use of stable-
isotope (8"°C and 8'°N) signatures reflects biologically
integrated nutrients in diet over a long time period (e.g.
several months for muscle tissue; Peterson & Fry 1987),
but it does not provide direct evidence of an organism’s
prey items. The two methods in combination provide a
more accurate picture of an organism’s feeding habits
than the use of a single method alone.

Materials and methods

The study site is Caleta Dighton (53°49'S, 72°12'W),
within the Barbara Channel, which connects with the

520

54°S+

Strait of Magellan in the Francisco Coloane CMPA
(Fig. 1). The samples were collected during April
2016. This pilot survey is framed within an ichthyology
research initiative for a remote area of difficult access
and where there is no empirical knowledge on diversity
of native and introduced fishes, or on their ecological
interactions. All fish were captured using a gill net
(length 60 m; height 3 m; mesh size 2.5 cm) from the
bottom to the surface with 12-h resting periods. All
individuals caught were measured and weighed to
obtain the size range (cm) and total weight (g). The
entire digestive tract was removed and conserved in
80% ethanol for stomach content analysis. In the
laboratory, stomach contents were identified to the low-
est possible prey taxon, counted and weighed. The
contribution of different prey items to the fishes™ diet
was determined by the IRI. The IRI is expressed as a
percentage and calculated as: %IRI = %F (%N + %W),
where %N is the percentage by number, %W is the
percentage by weight, and %F is the percentage of
occurrence (Hyslop 1980; Cortés 1997).

A sample (2 cm®) of dorsal muscle tissue from
each fish was frozen at —80°C for stable-isotope ana-
lysis. In the laboratory, samples of dorsal muscle tissue
were dried for 72 h at 60°C and subsequently homo-
genized. All samples underwent a process of lipid
extraction with a solution of petroleum ether for 3 h
in a Soxhlet extractor, as lipids are depleted in '*C with
respect to other macromolecules (e.g., proteins). It is
assumed that the §'°C values will tend to be lower
than in samples with a higher lipid content (DeNiro &
Epstein 1977). The isotopic composition of carbon and
nitrogen was analysed in an isotope-ratio mass spec-
trometer (Thermo Delta Advantage), coupled with a
Flash 2000 Elemental Analyzer by Thermo Scientific
(Michener & Lajtha 2007). The results were expressed
in 8 notation according to the following formula:

Atlantic Ocean |

(& -~ -

F/\/\b o Carlos Il Island
% A pfpra 5

N s ”CISCOC

- %O/Oane

o Santa Inés Island  Caleta Dighton **

Barbara Channel

Figure 1. Study area in the Chilean southern Patagonia. Shown in the inset is the Francisco Coloane CMPA and study sites
where Champsocephalus esox, Patagonotothen tessellata, P. cornucola and Oncorhynchus tschawytscha were collected (Table 1) in
April 2016 from Caleta Dighton, connected to the Strait of Magellan by the Barbara Channel.



0X = [(Rsample/Rstandard) - 1] x 1000,

where X is °C or N, and R is the corresponding
ratio ’C/"*C or "N/™N for samples or standards
(Unkovich et al. 2001). The Vienna Pee Dee
Belemnite was used as a reference standard for com-
parison with 8'°C, and atmospheric nitrogen was
used for comparison with §'°N. Data were subjected
to the Shapiro-Wilk and Levene homoscedasticity
tests. One-way ANOVA was used to compare isotope
ratios between the different species, and pairwise
comparisons between species were performed with
HSD (Zar 2010). All statistical analyses were per-
formed using the R software (R Core Team 2013).
The computer package Primer version 6 was used to
generate hierarchical clustering based on applying
Euclidean distances to isotope ratios (Clarke &
Gorley 2006). We used the isotopic signal of krill
(Euphausia lucens) as primary consumer to estimate
TL because their tissues integrate seasonal variability
of particulate organic matter and phytoplankton
(Cabana & Rasmussen 1996; Van der Zanden et al.
1997). Krill was collected using a 250 um net, during
March of 2012 and 2016 in Caleta Dighton (Halo et
al. 2016). We estimated TL using the following equa-
tion (Cabana & Rasmussen 1996; Van der Zanden
et al. 1997):

TL=2+ (615Nconsumer - 615I\Iprimaryconsumer)/3-4;

where 2 is the TL of primary consumer, 8" N consumer
is the 8'°N of the species considered, and 3.4 is the
8'°N enrichment TL (Post 2002). To estimate isotopic
niche, we calculated the SEAc and dietary niche over-
lap with stable-isotope Bayesian ellipses for R using
the SIAR package in R (Jackson et al. 2011).

Results and discussion

We collected 12 specimens of Champsocephalus esox,
three Paranotothenia tessellata, 10 Patagonotothen
cornucola and three Omncorhynchus tschawytscha
(Table 1). Seven of the 28 stomachs examined were
empty. The majority of the empty stomachs were of
the icefish (C. esox, 50%). The diet of C. esox con-
sisted mainly of fish prey items (Patagonotothen sp.;
IRI = 40.1%; Supplementary Table S1). The main diet
of P. tessellata was the gammarid crustacean
Austroregia sp. (IRI = 34.5%) and the decapod
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Munida gregaria (IRI = 19.8%). The diet of P. cornu-
cola consisted of the crustacean decapod M. gregaria
(IR = 46.6%) and unidentified fish preys
(IRI = 18.1%). The salmonid O. tschawytscha preyed
mainly on M. gregaria (IRI = 52.2%; Supplementary
Table S1).

Except for C. esox, all the species examined fed on
M. gregaria. This crustacean decapod was the main
prey as a percentage by weight for O. tschawytscha
in Aysen fjord (45°16'S, 73°00'W; Niklitschek &
Toledo 2011). However, in terms of relative impor-
tance, the notothenioid was the main prey item of O.
tschawytscha in Aysen fjord, with a high percentage
of occurrence in the salmonid stomachs (Niklitschek
& Toledo 2011). A plausible explanation for the
absence of notothenioid in the diet of O. tscha-
wytscha could be the low number of stomachs ana-
lysed in this pilot study. Munida gregaria constituted
the bulk of P. cornucola’s diet, but in prior studies
the crustacean isopod Exosphaeroma gigas and gam-
marid crustaceans were their main prey items in the
intertidal zone of the Patagonian fjords and chan-
nels (Hiine & Vega 2016). Our results in C. esox are
in agreement with its reportedly piscivorous diet
(Moreno & Jara 1984), feeding primarily on
Patagonotothen species in mid-water.

Patagonotothen tessellata had the highest isotopic
mean values for §°C, and O. tshawytscha had the lowest
(Table 1). Champsocephalus esox had the highest isotopic
mean values for 6'°N, and both P. cornucola and P.
tessellata had the lowest 8'°N (Table 1). There were
highly significant differences between mean isotopic
values in the four species (one-way ANOVA: §"C,
F =574, p = 0.00; "N, F = 30.88, p = 0.00). We found
statistically significant differences in mean isotopic values
between P. fessellata and C. esox (HSD: 8'°C, p =0.01;
8N, p = 0.00) and between P. tessellata and O. tsha-
wytscha (HSD: 8¢, p=0.01; 8N, p = 0.02). Similarly,
P. cornucola showed significant differences in §"°N with
C. esox and O. tshawytscha (HSD, both p = 0.00). Our
results agree with the cluster analysis based on isotope
data, which detected two different groups, one with
benthopelagic fish habits (C. esox and O. tshawytscha)
and one with benthic fish habits (P. cornucola and P.
tessellata; Fig. 2). Marked differences between consumer
groups with dissimilar life styles would be expected,
implying that available resources are distributed among
consumers that occupy different trophic levels.

Table 1. Fishes sampled from Caleta Dighton, in the Barbara Channel, Francisco Coloane CMPA in Chile’s southern Patagonia
(Fig. 1) for stomach content and stable-isotope analysis: total number of fishes sampled per species, size range, mean &'°N-

8'C, TL and SEAc.

Species Habitat n Size range (cm) 8"°N 53¢ TL SEAC
C. esox (pike icefish) Benthopelagic 12 28-34 153+ 03 -16.0 + 0.4 3.02 0.38
P. tessellata (rockcod) Benthic 3 18.5-20 13.9 £ 0.3 -14.7 £ 0.5 261 0.82
P. cornucola (rockcod) Benthic 10 19 - 26.5 139+ 04 -154 + 0.7 2.61 0.79
0. tshawytscha (chinook salmon) Benthopelagic 3 31.5-62 149 + 0.4 -16.2 + 0.6 291 0.98
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Euphausia lucens (n = 6) showed a mean 8"°N value of
11.83 £ 0.6%o in the geographic area of this study. Using
this as the reference primary consumer to estimate TL,
we found that C. esox occupied the highest TL (3.02;
range 2.85-3.23) followed by O. tshawytscha (2.91; range
2.81-3.05), whereas P. cornucola and P. tessellata showed
lower TLs with 2.61 (range = 2.46-2.86) and 2.61 (2.54-
2.71) than the benthopelagic fish (Fig. 2). However, in
terms of the range of displacement of the species ana-
lysed, O. tshawytscha, as an anadromous species, inhabits
the ocean and freshwater environments at different
stages in its life cycle and performs long migrations,
increasing its habitat range (Soto et al. 2007).
Oncorhynchus tshawytscha could have a greater foraging
range than the other species examined and be able to
consume similar prey but in areas with different basal
isotopic signal. Therefore, the foraging distance of O.
tshawytscha could have influenced the §"°N signal esti-
mated in this study and the estimated high trophic level.
According to Wainright et al. (1996) and Michener &
Kaufman (2007), it is difficult to determine whether the
isotopic composition of mobile organisms reflects local
feeding habits or the diet from other zones with different
isotopic composition. Oncorhynchus tshawytscha and P.
tessellata occupy lower TL in the fjords and channels
ecosystem of the Francisco Coloane CMPA than they
do along the Atlantic coast of Argentina (O. tshawytscha
4.87 TL; Ciancio et al. 2008) and Bahia Lapataia (54°51'S,
68°32'W) in the Beagle Channel, south-western
Argentina (P. tessellata 4.5 TL; Riccialdelli et al. 2017).
The different TLs of the same species in different geo-
graphic areas may relate to the variation in the baseline
isotopic signal in each geographic area (Fry 2008;
Graham et al. 2010).

In agreement with the cluster analysis, the isotopic
niche area (%o°) of C. esox, P. tessellata, P. cornucola
and O. tschawytscha, shown by the SEAc plot (Fig. 3),
differentiates between the benthopelagic fish habits

20 1.5 1.0

(C. esox and O. tshawytscha) and the benthic fish
habits (P. cornucola and P. tessellata; Fig. 3). The
SEAc overlap between C. esox and O. tshawytscha
was 0.27, whereas the overlap between P. cornucola
and P. tessellata was 0.21. The SEAc ranged from
0.98%0> (O. tschawytscha) to 0.38%0> (C. esox). The
isotopic niche area of O. tschawytscha is relatively
large in comparison with the small niche area of C.
esox, suggesting the use of a wide range of resources
(e.g., habitat and diet) by the invasive salmonid ver-
sus a low diversity of resources used by the native
nothotenioid (Table 1, Fig. 3). However, this preli-
minary result should be further validated with the
larger sample size of O. tschawytscha.

Segregation of microhabitats is an important fac-
tor for reducing the effects of competition for
resources (Ross 1986; Grossman et al. 1987;
Rinéon & Loboén-Cervia 1993). In our study,
trophic differences could relate to the habitat use
by fish species with diverse lifestyles (e.g., benthic
and benthopelagic). Another factor that might
reduce the effects of trophic competition relates to
differences in the diel activity patterns of fish
(Hansen & Closs 2005; David et al. 2007). The
nocturnal feeding activity, for instance, has been

observed for P. tessellata in the subtidal waters of

Patagonian channels (Salas-Berrios et al. 2013;
Hiine & Vega 2015). In contrast, O. tschawytscha
are diurnal feeders (Schabetsberger et al. 2003).
Along the coast of Tierra del Fuego Island, the
southernmost tip of Patagonia, the chinook salmon
may compete for food resources with the
Magellanic penguin (Spheniscus magellanicus) and
with Commerson’s dolphin (Cephalorhynchus com-
mersonii) because these predators occupy similar
TLs and feed on similar fish, cephalopods and crus-
taceans (Ciancio et al. 2008; Niklitschek & Toledo
2011; Riccialdelli et al. 2013; Scioscia et al. 2014).

0.5 0

| |

T

T : O. tshawytscha (2.81)

s 1
C. esox (2.98)

C. esox (3.23)

Benthopelagic
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)
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Figure 2. Dendrogram based on §'C and 6'°N values from a subtidal fish assemblage from Caleta Dighton (Barbara Channel;
Fig.1) in the Francisco Coloane CMPA, Chile’s southern Patagonia. Numbers in parentheses are the estimated TL.
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Figure 3. Standard ellipse area (solid lines) depicting trophic niche breadth and overlap based on SEAc analysis for
Champsocephalus esox, Patagonotothen tessellata, P. cornucola and Oncorhynchus tschawytscha sampled from Caleta Dighton
(Barbara Channel) in the Francisco Coloane CMPA, Chile’s southern Patagonia (Fig.1).

Our results suggest that O. tschawytscha are general-
ist predators with a broad isotopic niche, possibly com-
peting with the icefish (C. esox), as both have equivalent
TLs. Regarding the broad isotopic niche of O. tscha-
wytscha, our results on stomach content analyses indi-
cated that O. tschawytscha feed mainly on the decapod
M. gregaria, but the chinook salmon could feed on
several prey items (Niklitschek & Toledo 2011). In
addition, the foraging ranges of chinook salmon could
encompass a wide geographical area, which would
influence its broad isotopic niche. Continued sampling
and analyses of more specimens will further our under-
standing on the trophic relationships and the ecological
consequences of resource competition among exotic
salmonids in the Francisco Coloane CMPA and its
native, subtidal fish assemblages.
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